
Portal: Portable Accelerated Learning
Our ability to scale computing is facing its biggest challenge in its history. As the performance gains (in
terms of energy/op, $/op, and ops/sec) from technology scaling have nearly stopped, people are turning
to domain-specific hardware accelerators to create higher performance and more energy-efficient
computing systems. This trend is clearly seen in machine learning (ML). Yet it takes a huge investment
and several years for domain-specific accelerators to be deployed at scale, because of the enormous
engineering effort required to build and verify a robust and performant software system, including an
application compiler. Because of the complexity of this task, many accelerator teams produce brittle
compilers or only export libraries that exploit the hardware with no automated optimization. Even writing
these high-performance libraries is a difficult and time-consuming task.

This center will address the challenge of enabling agile hardware/software development for the
large data problems of today and the future. We will demonstrate the capabilities of our approach
by creating accelerators and software systems for ML applications.

Four key insights drive our approach. First, all hardware acceleration relies on exploiting parallelism,
locality, and specialization to improve application performance. To get sufficient gains to warrant
customized hardware, the application must have abundant parallelism: it must be working on problems
that deal with large collections of data. Hence, we will tailor our system to creating hardware/software to
accelerate applications that work on large data collections.

Second, creating performant and energy-efficient applications always requires tuning of the algorithms,
software and hardware. So, our approach must provide ways of measuring the performance and energy
of the hardware on an application and provide these measurements in a manner that a programmer
would understand and can use to perform tuning.

Third, it is hard and expensive to build complex systems. We must use agile methods to address this
issue that largely reuse and incrementally modify existing hardware and software systems, rather than
create a new system from scratch. So future hardware systems must integrate accelerators on existing
base systems. Yet this doesn’t resolve the software issue: creating a custom compiler for each
application-domain/accelerator pair requires too much effort and prevents interoperability. It is often
essential for the base system to be able to connect different types of computational flows together and to
different accelerators. This task is usually accomplished by a common IR used to represent all the
different flows.

Finally, the LLVM IR, which is used to compile most code today, is excellent at expressing and optimizing
the execution of primitive operations, but is much too low-level to interface to accelerators that perform
complex operations on data collections. Its primitives need to be lifted into operations on tiles and other
small collections, which is a difficult task.

Approach

We believe four abstract data models (abstract collections), and associated operations, cover most things
we are currently computing on at scale: (1) tensors, (2) graphs, (3) relations, and (4) space. While similar,
these data models are useful for expressing different things at the application level. For example, a
simulation may store a mesh in a graph, assemble global stiffness matrices from the graph, and assemble
collision resolution matrices from a collision-detection query over space. And a recommender model may
perform a k-nearest neighbor query over a high-dimensional space followed by tensor operations over



embeddings. Tensors are also the fundamental building blocks of many deep learning libraries, which
have to navigate the tension between flexibly supporting myriad network architectures and achieving high
hardware utilization for each architecture.

We plan to build programming models around these abstractions, with language constructs to transition
between different types of collections (e.g., from a graph to a matrix). With appropriate operations (e.g.,
tensor algebra and set queries), we can make sure the applications are detached from the order of
operations and where data is stored, making it possible to bind these decisions in the compiler and hence
get portability. Our prior work in creating TACO, a compiler for portable dense and sparse tensor algebra
will guide this work. There are many popular languages that already operate at the data collection level,
such as pandas and PyTorch. As a starting point, we will use PyTorch with sparse extensions (so it can
naturally support models like graph neural networks and mixture of experts) as the front-end language for
our ML compiler.

We can reduce the operations on the four collections to one unified IR that is capable of expressing how
we traverse and co-traverse data structures, enabling one infrastructure that optimizes and merges code
across the different collections (e.g., fuse tensor algebra onto dataframe data structures). We will use this
single IR framework to provide portability across heterogeneous accelerators by requiring the
accelerators to register their “capabilities” with this compiler. These capabilities would be expressed in
terms of a capability language that enumerates what operations in the application languages (or the IR)
they support, along with the cost (time, energy) of the operations, enabling the compiler to optimize the
performance and/or energy of the application.

To provide concrete test cases for our compiler, we will explore different types of hardware accelerators.
Many of these will come from an ML accelerator generator that we will create. This tool will explore
efficient methods for hardware design such as high-level synthesis, as well as approaches for making
accelerators more energy-efficient. It will also serve as a testbed for experimenting with the compiler and
evaluating the completeness of the capability language. Ultimately, we will extend this accelerator
generator to create the backend compiler needed to map the high-level collection operations to the
accelerator’s native ISAs or configuration. In addition to the work on this generator, we plan to explore
some non-traditional computing approaches to these problems to both cast a wider net and to stress test
our software system. We plan to explore possible acceleration options for a range of compute models,
including hyperdimensional computing, p-computing, and digital-amenable analog computing models,
such as oscillator-based computing. We also will explore inverse design, data-driven model
augmentation, and analysis of materials and circuits for analog (and quantum) computation.

Our prior work has also shown the advantage of creating generators which can automatically create
formal models of the generated hardware. We will use this approach to help us automate design tasks
and validate the hardware. We will also leverage formal techniques for non-functional validation and for
ensuring the correctness of transformations performed by the compiler. We will explore strategies for
improving and configuring our tools, including our hardware generator and our compiler, in order to
improve our ability to leverage formal analysis.

Finally, creating energy-efficient and performant systems always requires application/hardware co-design.
For example in ML, while high-level libraries such as Jax or PyTorch make it possible to express new
model architectures, the resulting code often does not achieve high hardware utilization without careful
optimization by hand. This optimization is a time-intensive process that requires specialized knowledge
about the underlying accelerators, and slows down model innovation. An essential part of our research is
to address this issue which includes creating a compiler/simulator which is able to generate and track the
right performance/energy/area/accuracy metrics critical for application optimization. Next, we must build



our IR and compiler system with the right abstractions to allow these metrics to be presented to the
application programmer in a manner which they can understand. Finally, we will create optimization
techniques for recurring problems to further automate this task. For example, quantization to low precision
numerics is important for achieving higher op/W. However, their selection and deployment involves
making careful accuracy-efficiency tradeoffs by exploring a large space of design decisions. Our goal for
a common issue like this is to not only provide appropriate feedback, but to create systems which
automate the application-hardware/software design optimization, making deployment of ML applications
using fine-grained low/mixed-precision formats easier.

Faculty

Portal brings together eight faculty from Stanford University—Mark Horowitz, Thierry Tambe, Priyanka
Raina, Fred Kjolstad, Sara ​​Achour, Clark Barrett, Mert Pilanci, and Ludwig Schmidt—with expertise
spanning hardware accelerators, compilers, programming languages, formal methods and machine
learning, including both ML algorithms, and model compression and quantization techniques. The faculty
have extensive experience in building real research prototypes, several of which have turned into
successful commercial technologies.

Mark Horowitz is the Fortinet Founders Chair of Electrical Engineering and the
Yahoo! Founders Professor in the School of Engineering. He co-founded Rambus,
Inc. in 1990 and is a fellow of the IEEE and the ACM and a member of the National
Academy of Engineering and the American Academy of Arts and Science. His
research interests are quite broad and span from applying EE and CS analysis
methods to problems in molecular biology, to creating new design methodologies
for analog and digital VLSI circuits.

Thierry Tambe is an Assistant Professor of Electrical Engineering at Stanford
University. His research interests include hardware and software co-design
techniques for domain-specific silicon systems for emerging AI and
compute/memory-intensive applications. Previously, Thierry was an engineer at
Intel where he worked on mixed-signal architectures for high-bandwidth memory
and peripheral interfaces on Xeon HPC SoCs. He received a B.S., and M.Eng.
from Texas A&M University, and a PhD from Harvard University. He is a recipient of
a NVIDIA Graduate PhD Fellowship, an IEEE SSCS Predoctoral Achievement

Award, and distinguished paper awards at DAC and MICRO.

Priyanka Raina is an Assistant Professor of Electrical Engineering at Stanford
University. She works on domain-specific hardware accelerators and agile
hardware–software codesign methodologies, particularly for machine learning. She
received her B.Tech. degree from IIT Delhi, and M.S. and PhD degrees from MIT.
Her research has won best paper awards at VLSI, MICRO, ESSCIRC and in
JSSC. She has won the Sloan Research Fellowship, the NSF CAREER Award, the
Intel Rising Star Faculty Award, the Hellman Faculty Scholar Award and is a
Terman Faculty Fellow.

https://www.sara-achour.me/home


Fredrik Kjolstad is an Assistant Professor of Computer Science at Stanford
University. He works on compilers, programming models, and systems, with an
emphasis on portability. His research includes the TACO Sparse Tensor Algebra
Compiler and the Simit language for computing on sparse systems. He has
received the NSF CAREER Award, the MIT Sprowls PhD Thesis Award in
Computer Science, the Rosing Award, an Adobe Fellowship, a Google Research
Scholarship, and several best/distinguished paper awards.

Sara ​​Achour is an Assistant Professor jointly appointed to both the Computer
Science and the Electrical Engineering departments at Stanford University. Her
research focuses on new techniques and tools, specifically new programming
languages, compilers, and runtime systems, that enable end-users to more easily
develop computations that exploit the potential of emerging computing platforms
that exhibit analog behaviors.

Clark Barrett is a Professor (Research) of Computer Science at Stanford
University. His expertise is in automated reasoning and its applications. He was an
early pioneer in formal hardware verification as part of 0-in Design Automation
(now a part of Siemens), where he helped build one of the first successful formal
verification toolsets for hardware. His current work focuses on the development
and application of automated reasoning techniques to improve reliability and
security of software, hardware, and ML systems. He is an ACM Distinguished
Scientist and a winner of the 2021 Computer Aided Verification award.

Mert Pilanci is an Assistant Professor of Electrical Engineering at Stanford
University. He received his Ph.D. in Electrical Engineering and Computer Science
from UC Berkeley in 2016. Prior to joining Stanford, he was an Assistant Professor
of Electrical Engineering and Computer Science at the University of Michigan. In
2017, he was a Math+X postdoctoral fellow working with Emmanuel Candès at
Stanford University. His research interests are in large scale machine learning,
neural networks, optimization, and information theory.

Ludwig Schmidt is an incoming Assistant Professor of Computer Science at
Stanford University. Ludwig’s research interests revolve around the empirical
foundations of machine learning, often with a focus on datasets, reliable
generalization, and large models. Recently, Ludwig’s research group contributed to
open source machine learning by creating OpenCLIP, DataComp, and the
LAION-5B dataset. Ludwig completed his PhD at MIT and was a postdoc at UC
Berkeley. Ludwig’s research received best paper awards at ICML and NeurIPS, a
best paper finalist at CVPR, and the Sprowls dissertation award from MIT.

https://www.sara-achour.me/home

